Using graphics processing units to generate random numbers
نویسندگان
چکیده
The future of high-performance computing is aligning itself towards the efficient use of highly parallel computing environments. One application where the use of massive parallelism comes instinctively is Monte Carlo simulations, where a large number of independent events have to be simulated. At the core of the Monte Carlo simulation lies the Random Number Generator (RNG). In this paper, the massively parallel implementation of a collection of pseudo-random number generators on a graphics processing unit (GPU) is presented. The results of the GPU implementation, in terms of samples/s, effective bandwidth and operations per second, are presented. A comparison with other implementations on different hardware platforms, in terms of samples/s, power efficiency and cost-benefit, is also presented. Random numbers generation throughput of up to ≈18MSamples/s have been achieved on the graphics hardware used. Efficient hardware utilization, in terms of operations per second, has reached ≈98% of the possible integer operation throughput.
منابع مشابه
GPU Accelerated Scalable Parallel Random Number Generators
SPRNG (Scalable Parallel Random Number Generators) is widely used in computational science applications, particularly on parallel systems. The LFG and LCG are two frequently used random number generators in this library. In this paper, LFG and LCG are implemented on GPUs in CUDA. As a library for providing random number to GPU scientific applications, GASPRNG is designed to have one generator p...
متن کاملInvestigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...
متن کاملHigh-Performance Pseudo-Random Number Generation on Graphics Processing Units
This work considers the deployment of pseudo-random number generators (PRNGs) on graphics processing units (GPUs), developing an approach based on the xorgens generator to rapidly produce pseudo-random numbers of high statistical quality. The chosen algorithm has configurable state size and period, making it ideal for tuning to the GPU architecture. We present a comparison of both speed and sta...
متن کاملNumerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملPerformance and Quality of Random Number Generators
Random number generation continues to be a critical component in much of computational science and the tradeoff between quality and computational performance is a key issue for many numerical simulations. We review the performance and statistical quality of some well known algorithms for generating pseudo random numbers. Graphical Processing Units (GPUs) are a powerful platform for accelerating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1101.1846 شماره
صفحات -
تاریخ انتشار 2011